diagonal procedure

diagonal procedure
The method first used by Cantor to show that there cannot be an enumeration of the real numbers. Any real number can be written as an infinite decimal. So we imagine a correspondence with the natural numbers, giving us some real as the first, another as the second, and so on. Given such a list, Cantor defines a real number that differs from the first real in the first decimal place, the second in the second place, and so on for every listed real. Thus if the decimal expansion of the first real is written as the sequence of digits x 01 x 02 x 03… and the reals are laid out in order:
We then consider the diagonal (highlighted) real x 00 x 11 x 22…and define a non-terminating decimal that differs in each place: e.g. let y nn = 5 if x nn ? 5, and y nn = 6 otherwise. This then is a real that was not on the original list, for it differs from the nth real on the list in the nth place. The construction refutes the thesis that we had enumerated all the reals. Diagonal arguments are one of the most powerful tools of set theory and metamathematics . They also bear a close relationship to arguments of the Liar family: an explicit use of diagonal reasoning occurs in Richard's paradox.

Philosophy dictionary. . 2011.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • diagonal — procedure …   Philosophy dictionary

  • diagonal argument — diagonal procedure …   Philosophy dictionary

  • Cantor , Georg Ferdinand Ludwig Philipp — (1845–1918) German mathematician The son of a prosperous merchant of St. Petersburg, at that time the capital of Russia, Cantor was educated at the University of Berlin where he completed his PhD in 1868. In 1870 he joined the faculty of the… …   Scientists

  • List of philosophy topics (D-H) — DDaDai Zhen Pierre d Ailly Jean Le Rond d Alembert John Damascene Damascius John of Damascus Peter Damian Danish philosophy Dante Alighieri Arthur Danto Arthur C. Danto Arthur Coleman Danto dao Daodejing Daoism Daoist philosophy Charles Darwin… …   Wikipedia

  • mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… …   Universalium

  • Algorithme De Tracé De Segment De Bresenham — L’algorithme de tracé de segment de Bresenham est un algorithme développé par Bresenham en mai 1962, alors qu’il travaillait dans un laboratoire informatique d’IBM et cherchait à piloter un traceur attaché à une console texte. Cet algorithme a… …   Wikipédia en Français

  • Algorithme de trace de segment de Bresenham — Algorithme de tracé de segment de Bresenham L’algorithme de tracé de segment de Bresenham est un algorithme développé par Bresenham en mai 1962, alors qu’il travaillait dans un laboratoire informatique d’IBM et cherchait à piloter un traceur… …   Wikipédia en Français

  • Algorithme de tracé de segment de Bresenham — L’algorithme de tracé de segment de Bresenham est un algorithme développé par Bresenham en mai 1962, alors qu’il travaillait dans un laboratoire informatique d’IBM et cherchait à piloter un traceur attaché à une console texte. Cet algorithme a… …   Wikipédia en Français

  • Algorithme de tracé de segment de bresenham — L’algorithme de tracé de segment de Bresenham est un algorithme développé par Bresenham en mai 1962, alors qu’il travaillait dans un laboratoire informatique d’IBM et cherchait à piloter un traceur attaché à une console texte. Cet algorithme a… …   Wikipédia en Français

  • Jacobi eigenvalue algorithm — The Jacobi eigenvalue algorithm is a numerical procedure for the calculation of all eigenvalues and eigenvectors of a real symmetric matrix. Description Let varphi in mathbb{R}, , 1 le k < l le n and let J(varphi, k, l) denote the n imes n matrix …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”