Aussonderungsaxiom

Aussonderungsaxiom

Philosophy dictionary. . 2011.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Aussonderungsaxiom — Das Aussonderungsaxiom stammt aus der Zermelo Mengenlehre von 1907[1] und ist daher auch Bestandteil der erweiterten, heute maßgeblichen Zermelo Fraenkel Mengenlehre ZF. Es besagt informell, dass alle Teilklassen von Mengen ebenfalls Mengen sind …   Deutsch Wikipedia

  • Zermelo-Fraenkel-Mengenlehre — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… …   Deutsch Wikipedia

  • Zermelo Fraenkel — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… …   Deutsch Wikipedia

  • MATHÉMATIQUES (FONDEMENTS DES) — Au sens premier et fort, le mot «fondement» désigne la base, jugée inébranlable, sur laquelle repose un corps d’énoncés, un système de connaissances, un complexe de croyances ou de conduites. «Reposer sur la base» signifie ici «trouver en elle à… …   Encyclopédie Universelle

  • Currys Paradox — Currys Paradoxon, auch Löbs Paradoxon, ist ein Paradoxon der naiven Mengenlehre und der meisten Logiken. Es erlaubt die Herleitung einer beliebigen Aussage aus einem selbstbezüglichen Ausdruck mittels einfacher logischer Regeln. Es ist benannt… …   Deutsch Wikipedia

  • Ersetzungsaxiom — Das Ersetzungsaxiom ist ein Axiom, das Abraham Fraenkel 1921 als Ergänzung zur Zermelo Mengenlehre von 1907 vorschlug und später ein fester Bestandteil der Zermelo Fraenkel Mengenlehre ZF wurde.[1] Es besagt informell, dass die Bilder von Mengen… …   Deutsch Wikipedia

  • Induktive Menge — Als induktive Mengen werden in der Mathematik Mengen M bezeichnet, die die leere Menge enthalten und wo für jede Menge x auch deren Nachfolgemenge enthalten ist. Das Unendlichkeitsaxiom besagt, dass es eine induktive Menge gibt.… …   Deutsch Wikipedia

  • Leere Menge — { } ∅ Die leere Menge ist ein grundlegender Begriff aus der Mengenlehre. Man bezeichnet damit die Menge, die keinerlei Elemente enthält. Da Mengen über ihre Elemente charakterisiert werden und zwei Mengen genau dann gleich sind, wenn sie… …   Deutsch Wikipedia

  • Löbs Paradox — Currys Paradoxon, auch Löbs Paradoxon, ist ein Paradoxon der naiven Mengenlehre und der meisten Logiken. Es erlaubt die Herleitung einer beliebigen Aussage aus einem selbstbezüglichen Ausdruck mittels einfacher logischer Regeln. Es ist benannt… …   Deutsch Wikipedia

  • Löbs Paradoxon — Currys Paradoxon, auch Löbs Paradoxon, ist ein Paradoxon der naiven Mengenlehre und der meisten Logiken. Es erlaubt die Herleitung einer beliebigen Aussage aus einem selbstbezüglichen Ausdruck mittels einfacher logischer Regeln. Es ist benannt… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”